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ABSTRACT 

It is shown that a general class of nonlinear partial differential equations-including 
those frequently used in predicting atmospheric motions-can be converted to compu- 
tational form by either the “finite-difference” or “spectral” method to yield formally 
identical equations. These computational equations are then reduced to matrix notation 
and the nonlinearity (of arbitrary order) is shown to be expressible as a bilinear form. 
Finally, a method is described whereby these bilinear forms-quadratic forms in the 
case of even nonlinearity-may be readily programmed and calculated on a digital 
computer. Furthermore, a computer could be designed with high-order parallel arithmetic 
to substantially reduce computation time. 

1. INTRODUCTION 

Traditionally, information available about the behavior of a physical system 
which could be represented by a set of differential equations was deduced from the 
linear form of such equations. Those systems in which nonlinearity predominated 
were largely ignored, primarily because no analytical tools were available for 
their solution. The development of the digital computer with its large memory 
and high-speed calculation capability was instrumental in directing attention 
to nonlinear problems; this instrument has the capacity for solving nonlinear 
systems numerically. 

With reference to the problem of weather prediction, the basic mathematical 
equations which represent atmospheric flow are fundamentally nonlinear. Thus, 
this science lay dormant until computing technology advanced sufficiently to 
stimulate research and experimentation. A classic example of the frustration 
which inadequate computation facility could cause is vividly described in the work 
of Richardson [lo]. The promise which modern computing technology offers is 

1 Research supported by the Atmospheric Sciences Section, National Science Foundation, 
NSF Grant FA-761. 
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evident from the fact that weather forecasts are currently being supplied by 
numerical solution of mathematical representations in many weather centrals 
around the world; and this development has taken place in less than two decades. 

A considerable amount of research effort has been expended to bring the state 
of numerical forecasting to its present point; a large but unknown amount must 
yet be employed to extend our knowledge and capability. Such effort should be 
directed toward a better understanding of the physical aspects of the problem; 
wherever possible, mathematical aids should be available to the investigator so 
as not to deter or distract him from his search for better physical insight. It is the 
purpose of this paper to present such an aid. 

Once a set of differential equations is established to describe a physical system, 
a method of representation must be selected to define the values of the dependent 
variables as a finite set of numbers.2 Two such methods are currently applied to 
weather prediction systems. One-the more popular-involves the transformation 
of the differential equations to finite difference equations and is applied to a finite 
set of points in the space under consideration (space domain). The method was 
employed in one of the first calculations of numerical weather prediction by 
Charney, et al. [4] ; is being used in research investigations of the general circulation 
of the atmosphere by Leith [7], Mintz [S], and Smagorinsky, et al. [13]; and is the 
method utilized in routine daily weather prediction by the Numerical Weather 
Prediction unit of ESSA. 

The other method, frequently referred to as the spectral domain method, 
involves the expansion of the dependent variables in a finite series of space- 
dependent functions (known) and time-dependent coefficients (unknown). Space 
derivatives are then evaluated by operation on the known functions and the 
entire system is integrated over the specified domain The original set of differential 
equations is thus reduced to a finite set of differential equations in the time- 
dependent coefficients only. This set of coefficients corresponds (from the com- 
putation point of view) to the time-dependent set of point values established by 
the hrst proposed method. The spectral approach has been employed in weather 
prediction models by Silberman [12], Bryan [3], Baer [l], [2], and others. 

It is not the purpose of this discussion to argue the relative merits of these 
methods, a question which has already been considered by Ellsaesser [5]. Rather, 
it is the writers’ purpose to establish,, a general representation and computation 
scheme which is applicable to either method. In all the numerical models which 
have been reported, the authors have devoted substantial effort to representing 
their equations for computation; it is our hope that in the future this effort will be 
obviated. 

e Clearly this is necessary because the computer requires a finite time for any one calculation; 
thus it would require an infmite time to establish the continuous variation of any variable. 
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Although emphasis has been placed on systems of equations representing 
atmospheric flow-reflecting the writers’ backgrounds-a representation will be 
presented which covers a broad class of differential equations. Needless to say, 
any physical system which can be described by these equations may benefit from 
the representation. 

Consider now a system involving the set of N dependent variables Qj , 

wherein the dependent variables are related by N differential equations in both 
time (t) and space (+-the position vector). Let us further assume that the non- 
linearity of the system involves only space-dependent differential operations on 
the dependent variables. When the dependent variables exist linearly, they may be 
operated on by both time- and space-dependent operators. We thus consider the 
general class of N equations 

Here Rk,j is an operator in both time and space, whereas F$,m,i,k is an operator 
in space alone. The parameters cc, s and Cr, are defined as follows: 

s, = c si ) 
i=l 

(2) 

We note that J.L~ is a vector describing the dependent variables Osi which are 
involved in any nonlinear product; since each operator F operates only on one 
dependent variable !Dsi, the index i serves to isolate that variable from the vector 
pr. The order of the nonlinearity is determined by the value of m. Thus (1) allows 
nonlinearity to order 44. If the same set of variables as specified by &’ are involved 
in more than one product, a summation over another index would be needed to 
include all such terms; i.e., we would need F$,,,i,k , Fk,m,i,k , etc. This possibility 
offers no added complication, and we consequently make no symbolic reference 
to it. Subsequent examples will exemplify this situation. Should a system yield 
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terms with nonlinear products which are not integral, an expansion would have to 
be performed to make the terms conform to the representation of (1). 

It is the purpose of the subsequent discussion to show that the system (1) can be 
converted either by spectral expansion or by finite difference means to a 
computational representation which can be easily applied to digital computing 
procedures, provided an assumption in the numerical time integration is made. 
Only space truncation will be considered here. Several examples with meteoro- 
logical emphasis will be developed to exhibit the utility of the method. 

II. REPRESENTATIONAL SIMILARITIES OF SPACE AND SPECTRAL DOMAIN METHODS 

We shall show in this section that subject to definition, Eq. (1) can be put into 
a representation which is identical for both the finite difference and spectral 
truncation methods. Let us first, however, simplify the time and space operator 
R,,j . Discounting transcendental operators, one may generally write 

where Tk,i,i is an operator in time alone and Gk,j,i is an operator in space only. 
If we introduce (3) into (l), we have the N equations 

where Z, is defined as in (1). 

FINITE-DIFFERENCE METHOD 

To solve Eq. (4) numerically, one must assign values to the dependent variables, 
Qj , at discrete points in space. Customarily, the domain of interest is broken up 
into a three-dimensional lattice and the variables are assumed known at the inter- 
section points of the lattice. If one numbers these points, the association of this 
number with any dependent variable specifies the variable’s value at that point. 
It is not essential that the different variables Qi be known on the same grid; i.e., 
a different grid may be assigned to each variable. Thus we shall define the point 
number for any @j as ‘yi where 

and the value of the function Qi (in principle continuously distributed in space) 
is given by the set of numbers ($j,,); this set is, of course, time dependent. 
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We see that by breaking the continuous function into a discrete set, we also 
generate nk equations in the time-dependent quantities r#~~,,,, from each of the k 
differential equations (4), resulting in Cj”_, nj equations in the same number of 
variables I&,, . We shall for future reference define 

L s 2 nj. 
3-l 

(5) 

These equations cannot be written explicitly in terms of the variables I&,, 
until a &rite-difference operator is substituted for each space differential operator. 
The finite-difference operator may depend on all the grid values of the variable 
as follows: 

The coefficients “a” in the above equation will be determined from the choice of 
the finite-difference procedure to be applied. The more common of such operators 
involve only the near neighbor points to the point in question; only those “u’s” 
for which ai represented the near neighbor points of Yk would be nonzero. We shall 
see subsequently from an example how the fields of “a” are selected. Equation (6) 
is applicable to the left-hand side of (4); a similar development is used in the 
function ZI, of (1). If 

(7) 

where the finite-difference operator may or may not be the same as in Eq. (6),s 
we may combine the nonlinear terms to yield 

with 

‘q,,@, rk) = fi a~p?O.k.a’ .y . 
4-l 

‘f * 

Rather than writing out the product of sums, a single sum has been written to be 
taken over all variations of the vector hr = (a:, , CY:, , CY~, ,..., CX~~:,> where the range 
of each of the cr’s is given as 1 < olgi < nSi . This is clear from the substitution of 

* If  the finite-difference operators applied to the same equation differ for tierent times, serious 
computational stability problems may occur. This is not within the domain of our discussion here. 
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(7) into the product on the left-hand side of (8). The vector ~0” has been defined 
previously in (2). 

SPECTRAL METHOD 

In this method it is not necessary to establish discrete values of the dependent 
variables; one assumes the space dependence to be given by known polynomials 
in space and each variable is expanded in a series of time-dependent coefficients 
multiplied by the known polynomials. For computation purposes, the series must 
be finite, and thus truncation is introduced. If for each variable Qi there are nj 
coefficients (the truncation point), we may write 

where Pat are the space-varying polynomials (known) and the r$i,a, are the 
coefficients (time-dependent) of the series. Note that the 41,c1, of this discussion 
are not the same physical quantities as those of the finite-difference discussion 
although symbolically they are identical. 

It would be desirable to select the polynomials P as the characteristic function 
of the linearized form of the differential equation under consideration (l), but such 
functions may not often be available. Furthermore, it would be desirable, but not 
essential, that the polynomials be orthogonal on integration over the domain of 
interest. On substitution of the expansion (10) into (4), we still have N differential 
equations in both time and space, but we have increased the number of dependent 
variables to L [see (5)]. The number of equations may be increased to the number 
of dependent variables and the space dependence may also be removed if each of 
the k equations is multiplied successively by Py, and integrated over the space 
domain, where yk goes over its entire range, 1 < yr < nk . Thus each of the 
original equations yields nL equations which are time dependent only. 

Consider the space operation on the left-hand side of (4). Using the expansion 
(lo), 

‘%.iPj) = c +,mrr,(Q Gc.,.i<R,~. 
=I 

Multiplying by Py*, and integrating (the asterisk denoting the complex conjugate), 

where 
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A similar procedure may be applied to the function 2, of (1). We substitute (lo), 
multiply by PL and integrate to yield 

The vectors h,” and py have the same meaning as those used in (8) although the 
range of the indices CL:, must be established from the series given in (10). 

We are now in a position to convert (4) into a set of equations which are only 
time-dependent in the variables +j,.j . For the finite-difference method we sub- 
stitute (6) on the left-hand side and (8) on the right-hand side; for the spectral 
method we first multiply (4) by Pz and integrate, then substitute (11) on the 
left-hand side and (13) on the right. Either of these procedures leads to the following 
equation: 

N n. 

Thus we see that the computational form of the general differential equation (4) 
is representationally identical for both the finite-difference and spectral methods. 
This similarity allows for the development of a general computation scheme 
applicable to either method. It is only necessary to note the definitions of the 
dependent variables dj,, (t) and the constant coefficients “a” and “I” as defined 
by (6), (9) or (12), (14), respectively for the finite-difference or spectral methods. 

III. REDUCTION OFTERMS INVOLVING THE TIME OPERATOR 

We consider now a simpler representation of the spatial truncation of our 
differential equations which is applicable to either the finite-difference or spectral 
method. We have, 

where B is defined as the right-hand side of (15). 
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Let us now define a column vector @j which includes all the oij elements of Q, 
for a given j; these may be either the point values of the variables or the expansion 
coefficients and will be written 

@i = %J (17) 

with dimensions (nj x 1). A composite vector, including all the vectors of the 
different dependent variables will be defined as x and written 

x = {%I (18) 

of dimensions (L x 1). 
Consider now the following matrices involving the time operators Tk,j,i : 

~~,j,~~T~,~,~~~;T~,~~~‘- <T ;f .I;). (19) 

Here the matriees Zj are unit matrices of dimensions (nj x ni) and consequently 
the Tk,j,i are of the same dimensions. Since the matrices Tk,i are generated as 
diagonal matrices with pk,.j,i on the diagonal, their dimensions are (L x L). 

Finally, let US define a column vector of elements Uk,j,ti,,yk,i in which the elements 
are listed varying most rapidly on aj and least rapidly on j. This vector will be 
written as 

A k.yt,i = {akJ,a,.,,J = 

Clearly the vector has dimensions (L x 1). 

cm 

If we introduce the definitions (17), (18), (19), and (20) into (16), we have the 
form 

c &,,iTk.ix = &.yk 3 (21) 
i 

where the tilde represents matrix transposition. The elements of “A” are known 
either from (6) or (12), and therefore the matrix “A” may be combined with the 
time-operator matrix Tksi to yield a modified matrix. Furthermore, since x does 
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not depend on the index i, the operator matrices may be summed over this index 
to yield 

a time-operator matrix of dimension (1 x L). If we now write a vector which has 
as elements Tk+ over all k, yk , varying Yk most rapidly, and write a similar vector 
made up Of the elements &,yk as fOllOWs: 

T  = {Tk,,); B = @k.yk) 3 (23) 

T having dimensions (L x L) and B having dimensions (L x l), (16) is finally 
reduced to the matrix equation 

TX = B(x). (24) 

Since the function B is generally a non-linear function of the dependent variable 
x, an analytic solution for x as a function of time usually can not be found. We 
therefore resort to a numerical solution of (24) in time. If we break the time axis 
into increments of dt and assume that initial values are available at some time t, 
(consider to = 0 for simplicity), we may write a finite-difference equation to 
replace (24) at any time t = pdt. Let us select an explicit extrapolation scheme 
(Richtmyer [ll]), although this is not essential. We shall assume that the time 
operator T at any time pdt will predict x[(p + 1) dr] from all the previous values 
x(&lt)(j < p) which have been calculated and are known. Thus, 

P+l 
(TX) pAt = z. ~p,ix(W, 

where the matrices 7P,i are functions of the matrices &,,,& (Eq. 22) and dt (the 
time truncation interval) and the method of truncation employed. Because we have 
selected an explicit method, the right-hand side of (24) will be evaluated at pdt 
in terms of known quantities. On the assumption that T~,~+~ is non-singular, we 
may substitute (25) into (24) and solve for x[(p + l)dt], the unknown. The 
resulting finite-difference extrapolation equation becomes, 

X&' + l)dtl = - i ~,:+,~~,ix(idt) +~p.;+~Bf&Af)]. 
i-0 

(26) 

The first term on the right-hand side is easily calculated since it is linear in x 
and all the x’s are known up to pdt. The second term involves the nonlinear 
products of x at pdr. To establish the value of each element of the vector x at pdf, 
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we see that it will depend upon all the values of the dependent variables &+, for 
all time increments computed in a linear sense, plus a linear combination of all 
the nonlinear forms at pd1. We thus have the general form 

where “U” and “21” can be determined from the matrices of (26). 
It is important to note that the dependent variable can at any time be determined 

(not including linear terms) by a linear combination of nonlinear products-the 
functions &+-calculated at the preceding time step. We proceed now to simplify 
the representation of the functions B,,+ . 

IV. REDUCTION OF NONLINEARTERMS 

We have seen from (27) that the value of each scalar dependent variable $i,a, 
can be computed by a linear combination of the nonlinear products “B” as defined 
by the right-hand side of (15) and written 

We note that for m = 1 the terms are linear in the +i,ol, and are easily calculated. 
We shall thus direct the following discussion to terms with m > 1. For notational 
simplicity, we shall suppress the indices k, yk , although it shall be understood 
that the I’s of (28) depend on them. 

Before proceeding with this development, let us establish some definitions that 
will prove useful in the sequel. Consider the vector x as defined in (18). The matrix 
R will be defined as a matrix with zero off diagonal elements (in dimensions of x) 
and the vector x as diagonal elements. The dimensions of each element of this 
matrix will be the dimensions of x and the dimensions of the matrix in terms of its 
elements will be square and of order L, the number of scaler elements in x. Thus, 

L 

L (294 
. . . . . . . . 
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L, @‘b) 
. . . . . . . . 

etc. Since x is a vector of order (L x l), R will be of order (L2 x L) in the scaler 
elements 4i,N, . The bar operator as defined by (29) may be applied to a vector 
(say, x) as many times as necessary, and we shall abbreviate this multiple operation 
by the notation - 

i k times 
I (30) 

R” = 72 

Clearly, f” has dimensions (L”+l x L”). 
The matrices developed by successively increasing the bar operation on x may 

be multiplied; such a product will be defined for convenience as 

(31) 

Care must be taken to perform the multiplication subject to consistency rules for 
matrix multiplication. However, the multiplication may be performed in reverse 
if the matrices are transposed. This may be seen from the following two identities: 

?=x” (32) 

(33) 

Both identities are apparent from the definition of the bar operator (29a) and the 
definition for transposition of matrices. Eqs. (32) and (33) may easily be extended 
for an arbitrary number of bar operations. 

Finally, let us define vectors with dimensions identical to Qj and x but with 
unit elements; 

(34) 

K, has dimensions (n, x I> and K is (L x 1). 
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QUADRATICPRODUCTS 

We consider now a part of the nonlinear product (28) which involves only the 
quadratic product of the dependent variables c$~,,~ which we shall denote as 

Qz = c 1 c ~,,.=~l~,,..a,Za~.,~(k, rd. (35) 
Sl ss 4 

Note from the definition of h following (9) that At = (c& ,01:2) as used in (35). 
For given dependent variables represented by s1 and s2, we may sum over all 
elements $,qi,m:, for the quadratic product to get the matrix representation 

Q, = 1 c %,CZ,,,,,) @is, . (36) 
Sl S-A 

Here Qsl and Qsz are vectors defined by (17) and Z as used in (36) is a matrix made 
up of the elements Z given in (35) as 

Zm n2,/q = Va;.,$ (37) 

with dimensions (IZ,~ x n,*). Since the interaction matrix defined in (37) is 
independent of c$ and LX:, , we assign the subscript on X to indicate the number 
of indices by which A: has been reduced; i.e., 

We now develop a matrix of dimensions (L x L) which is made up of the sub- 
matrices defined in (37). Since this matrix will have elements depending on the 
values of (sl , sz), we may assume that, for each product of (36), only the element 
corresponding to (sl , s2) will be nonzero. Thus, 

0 . . . 0 . . . d 
. . . . . . . . . . ...* 
. . . . . . . . . . . . . . 

0 . . . zp r;" * * . 0 01 0 
. . . . . . . . . . . . . . 

(38) 

. . . . . . . . . . . . . . 
0 . . . 0 . . . 0 < 

Because all elements except (sl , sz) in (38) are zero, we may replace the appropriate 
Qs, with x [defined by Eq. (18)] in (36) and using (38) arrive at the equation 
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Finally, since x is independent of (sl , 2 , s ) the summation may be made over all 
matrices of the type (38) to yield the complete matrix 

Note that since the matrix Z ,,~,~y is no longer dependent on (So, s,), the subscript 
of ~1 has been incremented to indicate the number of degrees of freedom by which 
$ has been reduced. From the definition of ZL in (2), 

l-q = (s, , 84 ,..-, hn). 

This matrix has also been made symmetric to avoid confusion, an operation which 
may be justified by noting in (39) that Qz is a scalar. By introducing (40) into (39), 
we get the matrix form of Q, , 

Q, = R(Za;.,$ x- (41) 

CUBICPRODUCTS 

We may express a cubic product of (28) by multiplying Q, by another dependent 
variable (denoted by sg) and taking the appropriate sums. This yields 

Qs = 5 ; dsa..;Qs = c c 4w$k.gx- (42) 
53 St3 =3*3 

Unlike the quadratic case, this equation depends on only one dependent variable, 
sa . However, we may simulate the method applied to the quadratic case by 
generating a square matrix of dimensions (nsa x nss) with only diagonal elements 
and defined as 

i 

21(1)x 0 a*. 0 
0 2Z(2)x ,** 0 

Hm,,,= . . . . . . . . . . . . . . . . . 
ai3.k 

1 

, (43) 
. . . . . . . . . . . . . . . . . 

0 0 . . . Yh*) x 

withAy = (IX~ , IX:, ,..., CYST) and Z(j) = ZAs ,,,* m -(& = j). Substituting (43) into (42) 
and introducing the vector with unit elements defined by (34), (42) becomes 

The subsequent development follows by analogy to (38) and (40). Develop a 
square matrix in the elements H [defined by (43)) with only one nonzero element, 
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a diagonal element at the location (s, , sJ and with dimensions (L x L) in the 
scalars Qz ; 

H", A*,/.$ = 

-(p.. 0 . ..(j 

0 . . . Hm As dip - - * 0 
. . . . . . . . . . . . . . 
. . . . . . . . . . . . . . 

0 . . . 0 . . . 0 

(45) 

Substitution of (45) into (44) allows the use of the vector K (Eq. 34) and x to yield 

The summation of matrices implied in (46) leads to a square matrix of order 
(L x L) with only diagonal elements, the terms Q, developed for quadratic 
products; each of these elements is premultiplied by x” and postmultiplied by x. 
By using the definition of the bar operator [Eq. (29a)], we may thus write this sum 

where 

-1(1, 1) 0 . * - 0 0 . . . 0 - 
0 Z(2, 1) * . * 0 0 . . . 0 

. . . . . . . . . . . . . ..*.............. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

0 0 . . . I(L18, ) 1) 0 * ’ * 0 
0 0 . . . 0 Z(1,2) * - * 0 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

0 0 . . . 0 0 . . . m, 9 N 

(47) 

. (48) 

Here & = (s,, , s, ,..., s,) and Z(j, k) = IAy,P;(af3 = j, ss = k). Note that IA;,Py 
is symmetric since it is made up only of matrices on its diagonal which are them- 
selves symmetric, and has dimensions (L2 x L2). Utilization of (47) together 
with (46) leads to the final form for the cubic product, 
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Quartic products: The quartic product may be expressed from (28) by using 
Qz (Eq. 41) and two extra dependent variables, 

where At = (LX:, , CL:,). The development now follows identically the development 
for the quadratic case with Q&IT, $) replacing IAy,P: . We first establish a 
matrix similar to (37), 

4r,,e = wa%LIpx), 

with dimensions (n,$ x nS4). Next we expand on these matrices to create-similar 
to (38)-an augmented matrix of dimension N x N in the ZAySPy defined as 
I;4m,P; with only one nonzero element in location (sQ , s4). Noting from (39) that 
@:3 , CDS4 may be replaced by x in (50), the summation over ss , s4 may be applied to 
this newly created matrix and it may furthermore be made symmetric in a fashion 
similar to (40). We now observe that each element of this matrix is premultiplied 
by 2 and postmultiplied by x, allowing us to extract these vectors by using the R 
definition (Eq. 29a). We therefore have 

(51) 

Following the above procedure, Q4 becomes 

Q4 = $@a~.,d zx 

or, using the definition for U, in (31), 

Q4 = r7,Va,,,,) u, 

(52) 

(53) 

and the matrix I m A4 ,@; has dimensions (L2 x L2) in the original scalar quantities 
of (28). 

The procedures outlined above lead to straightforward generalization for 
arbitrary products; it is only necessary to separate the odd from the even products, 
since they result in slightly modified forms. 

EVEN PRODUCTS 

We may consider all even products of (28) by letting m = 21. Following the 
procedures of quadratic and quartic products, we find that 
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where I m A,,,F;L is a symmetric matrix of dimensions (LE x LI) in the scalar quantities 
Im m &‘WO * 

Odd products: For odd products it is only necessary to apply the technique for 
even products and then use the method for cubic products. Letting m = 2Z+ 1, 

(55) 

and %+x2+1 is a symmetric matrix of dimensions (Lz+l x Lz+l) in the variables 
Im m +l.Po . 

We may now combine the results of this section (54 and 55) to give a general 
matrix expression for the nonlinear terms of (1) as represented by (28) which 
becomes 

If the reduction of the left-hand side of (1) requires the summation of all the 
elements B(k, yk) for each variable ($j,m,), the summation may be performed on 
the interaction matrices “I” before time extrapolation begins as is seen from (27) 
and (56) as follows: 

It is important to note that the general nonlinear product can be represented as a 
quadraticform for even nonlinearity and a similar representation for odd products. 
The matrices U,, can be calculated from their definition at any time, and the 
matrices “I” are known (and remain constant) for all time once the basic equation 
and the space and time truncation have been established. We shall show sub- 
sequently, how (56) may be calculated in a straightforward manner. Moreover, 
a program for performing such calculations on a high-speed digital computer 
has been developed. 

V. EXAMPLE 1: FINITE-DIFFERENCE METHOD 

For a demonstration of the finite-difference method representation of (l), let us 
consider the set of equations representing atmospheric flow and sometimes referred 
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to as the “primitive equations.” We shall assume a representation in Cartesian 
coordinates (x, y, z) with the horizontal motion in a tangent plane (a plane tangent 
to the earth at some latitude) and vertical motion normal to this plane. The 
physical system will have no external heating (adiabatic) and the usual-and 
generally highly acceptable-hydrostatic approximation shall not be made. 
The basic system may be written 

aP -=- 
at P*vP-28 x P-avp-ggl;, 

(58) 

ap 
at= -P.vp+-&W. 

Here P represents the three-dimensional wind vector with components (u, U, w) 
in the three Cartesian directions expressed by the unit vectors (i, 3; &). P is the 
rotation vector of the earth with constant magnitude Q and components 
(0, 2LJ cos 8, 2G sin Q where 0 is the latitude of tangency, p and a are the pressure 
and density, respectively, g is the constant acceleration of gravity, and K is Poisson’s 
constant. 

In this system there are five independent variables, N = 5, and they may be 
represented by 45, as follows: 

@ = (@i) = tu, u, w, a, p), (59) 

It is immediately apparent that no reduction of the left-hand side of this system 
of equations is necessary as we may see by writing the operators defined by (3), 

(60) 

Scrutiny of the right-hand side of (58) shows that M = 2; i.e., we have both 
linear and quadratic terms. The operators F,,;, i Ic for this system are listed in 
Table I. If more than one set of operators appears in the table, all the sets must 
be applied to the dependent variables and the results added. This condition 
represents the multiple products of operators involving the same variables as 
discussed following (2). If we moreover add the inhomogeneous term g, Table I 
together with (59) and (60) may be used to give the representation of system (59) 
in the form (1). 
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TABLE I 

SPACE OPERATORS FOR FINITE-DIFFERENCE EXAMPLE 

49 

F+i& = 2, i = 1,2) 

k= 1 2 3 4 5 
.~ 

PO" j=l j=2 i=l i=2 i=l ix2 i=l i=2 i=l i=2 

(1, 1) 
(I, 2) 

(193) 

(194) 

(1, 5) 

c&2) 
(2, 3) 

(234) 

(2, 5) 

(3, 3) 

(394) 

(3, 51 

(4,4) 

(4, 5) 

(5, 5) 

-1 
ajily 

ajaz 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 
.- 1 

0 

a/ ax 

-I 

-1 

0 

0 

0 

a/ax 

0 

0 0 0 

-I a/ax 0 

0 0 -1 

0 0 0 

0 0 0 

-1 alay 0 

ajar -1 -1 

0 0 0 

0 0 0 

0 0 -1 

0 0 0 

0 0 0 

0 0 0 

-1 ajay --1 

0 0 0 

0 0 0 0 

0 0 0 0 

a/ax 0 0 0 

0 1 
-1 

I a/ax 0 
a/ax i 

-~I 

0 0 0 i a/ax 

0 0 0 0 

alay 0 0 0 

1 
0 t-- I alay 

alay 
0 

1 
-1 

0 0 0 I alay 
ajaz 0 0 0 

0 
I-’ jzjaz 

0 
alaz i 

0 0 0 
‘-1 

i ajaz 

0 0 0 0 

ajaz 0 0 0 

0 0 0 0 

I apx 
l/K - 1 

0 

0 

0 

I 

alay 

l/K - 1 

0 

0 

i 
aja2 

l/K - 1 

0 

0 

0 

F,;.l.i.k(m = 1, i = 1) 

-;Tq 1 2 3 4 5 

1 0 --2Q sin 9 2Qcos e 0 0 

2 2Q sin e 0 0 0 0 
3 -2.0 coss 0 0 0 0 

4 0 0 0 0 0 

5 0 0 0 0 0 

Constant - (0 0 &? 0 0) 
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We now show how this example may be expressed by substituting finite-difference 
operators for space differentials. As pointed out in Section II, we must establish 
a grid of points at which the dependent variables are to be evaluated. For simplicity, 
we shall assume that all the dependent variables are known at the same set of 
points. Furthermore, the separation between points will be the same in each 
horizontal layer, and these layers will be equally spaced. Thus an arbitrary point 
with coordinates (x, y, z) will be found in the finite-difference net at 

x =pAx =pAs; y = qdy = qAs; z = rdz, 

O<p,cP-1; O<q<Q-1; O<r<R--1 

or we may refer to the location in terms of the indices (x, , y,, , z,,) + (p, q, r). 
Since we wish to identify each point by a single index (the number r), we define 
(p, q, r) by the relation 

y(p,q,r)=PQr+Pq+p+l. (61) 

Thus each point is uniquely indexed and the total number of points will be PQR. 
The value of any variable at the point y will be &,rj , where we include the subscript 
on y to indicate the dependent variable to which reference is made. Since there are 
N = 5 dependent variable functions, the total number of discrete variable 
quantities is L = 5PQR (see 5). 

The finite-difference representation of the nonlinear terms follows the procedure 
outlined in Section II. Let us select as a representative example the two entries 
for p02 = (1,4), k = 4 from Table I. From the Table, (I), and (7), 

(62) 

where we have used the superscript on the a’s because more than one product 
involving the same dependent variables exists. Let y4 represent an arbitrary (but 
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not boundary) point in the net defined above with index values (p, q, r). We shall 
use the centered finite-difference operator to approximate the differential operator 

(63) 

an approximation commonly used and adequate to exemplify our procedure. 
Using (63), the coefficients of (62) may be written in Kronecker delta notation, 

(64) 

Although these fields of coefficients have PQR elements, we see that most are zero. 
These values then yield, for the interaction coefficients, 

',;,,$4,Y4) = & [6,&L~,,,, - ~+,+1> - k+Y*@~~*Y4+1 - *c+Y4-1)1 (65) 

a field of (PQR)" quantities, again mostly zero. We shall see later that the zero 
elements can be eliminated from actual calculation. There exists a set of interaction 
coefficients for each element in Table I and for each point (k) in the grid. Care 
must be taken at the boundaries, but we assume that appropriate boundary 
conditions are specified and that corresponding finite-difference operators can be 
unambiguously specified. 

The interaction coefficients (65) can be listed in matrix form by the procedure 
outlined in Section 4, which needs no further elaboration. The final matrix equation 
for this system becomes, 

where the matrices IA:+: are derived from application of the operators FP;,l,l,k 
of Table I and the matrices I ,&; arise from the application of the operators 
F,$2.,., and contain elements of the type described by (65). 
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VI. EXAMPLE 2: SPECTRAL METHOD 

For an example involving the spectral approach we shall use a somewhat 
simpler physical model-applying more approximations-than the one used in 
the previous section, but which nevertheless incorporates coupling of terms 
involving the time operators so that the results of Section III may be utilized. 
The model is generally referred to as a “General Circulation Model” and is very 
similar to one described by Phillips [9]. 

The flow field in this model is described by its rotational part (the vorticity) 
by use of the quasi-geostrophic and quasi-hydrostatic approximations. The 
dependent variables are described in pressure coordinates with spherical surfaces 
respresenting constant pressure surfaces having coordinates X (longitude) and ~1 
(sine of the latitude). [Note: The coordinate notation (A, p) is used here to conform 
to convention. These variables have no relation to the indices used elsewhere in 
this paper, and since all operations are defined, no confusion should ensue.] 
The vertical velocity (in pressure) is specified at the top and bottom of the 
atmosphere. Friction is incorporated at the surface proportional to the vorticity 
and nonadiabatic heating is included proportional to the mean temperature of 
the atmosphere.4 To simplify further, the pressure dependence is approximated 
by evaluating the dependent variables at two levels only (finite-difference 
approximation in the vertical in which the pressure interval is one-half the pressure 
depth of the atmosphere), and the dependent variables used are the stream 
functions at these two levels, derivable from the geostrophic vorticity. The 
equations for this system are5 

; [V”#, - h2(& - qG3)] = - i --z +1 / a(V2*l+h2*3~+~lIK(* +) 

ah ah t4 
13 19 

w& [V+,,4, + h2(#, - $3)] = -2 g + a(v2'3a; ;F ' ") 

(67) 
+ mb3 -A) 

9 

+ K2(V2#, - 3vy3j. 

The parameters & , #3 (the dependent variables) are the stream functions at the 
two levels and are functions of (f, A, cl). The quantities h2, Kl , K, are constants 
and depend on the character of friction, heating and static stability (also assumed 
constant). The Laplacian operator is taken in a spherical surface. 

We now represent system (67) in the notation of (1). Since there are only two 
dependent variables, N = 2 and 

Pl ,@,I = &4,1/13). 633) 

4 The model differs from that of Phillips [9] on this point. 
6 This model in spectral form is currently being investigated for its predictive characteristics 

with support from the National Science Foundation, Grant GA-761. 



SPECTRAL AND FINITE-DIFFERENCE APPROXIMATIONS 53 

For the time-space operators defined by (3), 

Tk,j.i = Tk.j.1 = a/at, 

Gk.j,i = Gs.j.1 E G1c.j 3 
z= 1. 

(6% 

The operators Gk,j are listed in Table II. From (67), we see that A4 = 2; the 
operators Fpr,,,i,k are listed in Table III, With these definitions, (67) may be 
expressed as (1). 

TABLE II 

OPERATORS Gk.,~o~ SPECTRAL MODEL 

x 1 

1 v2 - h2 

2 h2 

2 

ha 
Va - h2 

TABLE III 

OPERATORS FP;;l,,,,.i, keel SPECTRAL MODEL 

F p,:,l.l.k(m = 1, i = 1) 

x 1 2 

1 K~ - 2alah K,V” - Kl 

2 -C Kl - 2ajax - 3K,V= 

F,i.zdm = 2, i = 1, 2) 

2 

i=l i=2 

0 0 

u,v 
I 

aI+ hzalah 

I 

haajaX 

I 

aI+ 
-a/ax haalap - hzajacL a/ax 

c&2) 0 0 

j -... 
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The dependent variables Qi are now expanded in terms of orthogonal 
polynomials in (A, p) where we use surface spherical harmonics (see Hobson, [6]), 

p&3 1-4 = Y&t P) = exp (&,4 P,,(P) (70) 

with the properties 

V2Y,, = - c:,r., ) 

(71) 

where Cz, and Z=, are constants. Thus we have established the set of time-dependent 
variables &+, and &.+ . It is not necessary to specify numerically the series limit, 
and we shall therefore keep the range as 1 < aj < q ; we then have L = n1 + n2 . 
Using (70), (71) and Table II, we may represent the ak,j,,,,ya,i for this model from 
Eq. (12); this yields as an example for k = 1,j = 1, 

= s (-C,“, - h2) Y,,Y;dAdp (72) 

For the terms involving the F operators (Table III), using (14), (70) and (71), 
we have as an example with &j = (1,2), Xi = (ai , ai), 

(73) 

All the applicable terms may be calculated as the above examples and need not 
be listed here in detail. The functions Bksrt (Eq. 16) are known from evaluation 
of the type (73). 
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The terms involving variation in time may be uncoupled following the procedures 
outlined in Section III. In this example it is not necessary to establish the method 
of time truncation to perform the uncoupling. Following Section III and 
suppressing the index i since I = 1, 

GL:> 

x = #2,a;> * 
( ) 

(74) 

From (69), 

a 
T,,i = at 4; 

a 1l 0 
Tk = at 0 I, * ( 1 (75) 

From (20) and (72), 

Al,y, = [0 9.. -C;, - h2 ..a 0 1 0 s-e h2 ... 01, 

etc. Using (75) and (76), 

T k,yk = xk,ykTk = 2 Ak.,k 9 

a 
T=zA; A = @k,y& 

(7% 

Noting the values of the vectors Ak,+ as described by the example (76), we may 
spell out the matrix A as follows, assuming n2 > n, : 

A= 
nl n2 

-+; - h2 0 - . . . 0 ’ / &2 0 .‘:- . 0 

0 -C,z-h2... 0 I 0 h” . . . 0 

. . . . . . . . . . . . . . . . . . ./ . . . . . . . . . . . . . . . . . . . n, 
I . . . . . . . . . . . . . . . . . ../................... 

0 0 . . . -C;, - h2 \ 0 0 . . . h2 
___-__--------------- 
,-C--h2 0 . . . 0 

h2 . . . 0 I 
I 0 
I 

-C,z - h2. . . 0 
. . . . . . . . . . . . . . . . . . I ., . . . . . . . . . . . . . . . . . 

I n2 
I . . . . . . . . . . . . . . . . . . . I . . . . . . . . . . . . . . . . . . I . . . . . . . . . . . . . . . . . . . 
I 
I 0 0 . . . 
I 

-C;, - h2 
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At this point we deviate from the development of Section III because we may 
write immediately, 

A +#t = B (78) 
where 

B = {Br,,& (79) 

the latter vector elements having been evaluated in the discussion above up to 
and including (73). Now assuming that A has an inverse6 with elements ZQ+,~,,,~, 
the time differential equation for each dependent variable may be written, 

the uncoupled equation comparable to (27). The complete expression for (1) in 
matrix form for this example (67) can now be written as 

a+k., 
- = R(ll,(k~ rk)> x + X”izz2(k Yk)) x at 

where the matrices ZZ are defined by (57) using the elements z1 from the inverse of 
A (77b) and the matrices Z from the elements of Table II developed as in (73). 
Any truncation scheme may now be used to solve (81) in time, provided the 
initial conditions are properly specified. 

VII. CALCULATION PROCEDURE 

We have seen how it is possible to reduce a general, nonlinear differential 
equation (1) to the form (27) for numerical calculation. We furthermore note that 
all the quantities on the right-hand side of (27) are known at any time t = pdt. 
Since there are L (Eq. 5) dependent variables, there are L equations of the type (27) 
which must be solved at each time step. The linear terms offer no computational 
complexities since the coefficient fields iJp,i,aj,b.,,k.i are known for all time. Therefore 
we may concentrate our attention on the calculation of the nonlinear terms. 

The nonlinear terms may be represented-regardless of the order of nonlinearity 
-by a bilinear form (quadratic in the case of even products) as seen from (57). 
If we represent an arbitrary bilinear form as 

N+ DLIHJ~,, (82) 

’ I f  a degeneracy were to exist in the system, it could be removed by reducing the number of 
dependent variables, 
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where 1 < I < 2M, we see that vectors D 1,1 and Dl,, and the matrices Hr are 
defined for odd and even products from (57) in Table IV. 

TABLE IV 

VECTORS AND MATRICES OF THE BILINEAR FORM (7.1) IN TERMS OF (4.30) 

Odd Even 

an 
Gl 
&n 

The vectors Dl,, and DI,, may be calculated from the values of the vector x&If)-- 
known quantities-by usual matrix multiplication procedures as implied by (29), 
(30), and (31). Since all the products are of the form (82), we may delete the I 
subscript and describe the calculation of any one of the bilinear forms, NLc . 
We note, however, that for each equation of the type (27)-and there are L of 
them-there may exist a bilinear product of the form (82); thus we refer to the 
product for a given equation as NLk(l < k < L), remembering that the degree 
of nonlinearity of this term is implied (the subscript I having been suppressed). 

With elements of D, , D, , and Ht known, 

4 = Mil; 4 = G&j); H,c = h.J, 
we may establish the ordered set 

From this set we may establish the bilinear product for the kth equation by 
multiplying the ith element of D, by the jth element of D, by the interaction 
coefficient hi,i.le . We now establish the set (not necessarily ordered) of all subsets 
a T? 

A = (aJ, (84) 

This set includes all the information necessary to determine the nonlinear products 
for a given computation time pdt, and contains L2z elements a, . We have already 
seen, especially for the finite-difference method, that many (if not most) of the 
hiejsl, vanish. We therefore extract from A the subset of all elements for which 
hi,j,k does not vanish and define this subset A’. The information contained in this 
set (A’) may now be used to compute the nonlinear products at any time that the 
elements of Dl and D, are known and thus extend the calculation to any desired 
time according to (27).7 

’ The method described above is extremely well-suited to application on digital computers and 
has been programmed for the model used in Section VI, 
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Certain computational efficiencies may be effected as follows: 

(1) We note that for a given order of nonlinearity, say I1 , the vectors D, and 
D, do not depend on the index k; however, the interaction matrix elements do. 
Thus we should order the set A’ such that all values of k are incorporated before 
i and j are changed. We might have 

a r+l = (4 ,h , kl + 1, h),+, , 

We need now compute the product D,,il Ds,j, only once and multiply it by the 
n + 1 values of h, cumulating the results in the partial sums which will make up 
the new values of the dependent variables ak at t = (p + 1) d t. 

(2) If the dependent variables (x) which make up the vectors D, and D, 
are complex, and certain relationships exist between the real and imaginary parts,s 
the set A’ may be further ordered on i and j to avoid redundant multiplication. 

(3) For even products of the nonlinear terms, we see from (54) that the bilinear 
form is a quadratic form. Since the interaction matrices are symmetric, it is only 
necessary to compute one-half of the matrix product, say above the principal 
diagonal, and double the values. 

Many variations of ordering of the subsets a, may be made depending on 
individual requirements. As an example, if storage of elements creates difficulties, 
the subset a, may be expanded to include the number of variations of k which 
exist for given i and j. Thus i, j, and k need be enumerated only once for this set 
of a, , with considerable saving in storage. The possibilities for ordering are many 
and need not be detailed: they will become apparent when a computation is 
prepared. 

VIII. CONCLUSION 

It has been shown that a general class of nonlinear partial differential equations 
in time and space can be represented in a form which may be easily programmed 

8 Such conditions might exist so that variables describing physical quantities are real, 
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for computation on a digital computer. To prepare any set of equations for 
computation, a truncation scheme must be selected to represent the dependent 
variables as a discrete set of numbers; continuous solutions are generally not 
available. The computational form described is applicable for both the “spectral” 
and “finite-difference” truncation schemes, two methods most frequently used to 
reduce the continuous variables to a finite set. The truncation methods have been 
applied to the space-dependent aspects of the variables only. No specific truncation 
procedure has been applied to the time dependence of the system although how 
such truncation might be achieved has been indicated. 

In the final computational form, all nonlinear terms are expressed as bilinear 
forms, the matrices of which are independent of time; i.e., they are not functions 
of the dependent variables. The vectors of the bilinear form depend only on the 
dependent variables of the system and are easily calculated at any time that the 
variables are known. The entire form, it is shown, is readily programmable for 
computation on a digital computer. The system may furthermore be reduced to 
minimum calculation by deleting all zero multiplications, thereby making it 
practicable for the finite-difference method. 

Considerable flexibility in the selection of a time truncation scheme is available 
for the final computational form. Since the space truncation has been represented 
in the interaction matrices, no confusion between space and time truncation need 
be encountered. There will undoubtedly be a relationship between these two 
truncation procedures for computation stability, but this relationship may be 
investigated directly from the characteristics of the interaction matrices. Further- 
more, from the properties of these matrices, some estimates of truncation errors 
may be established; these errors will be based on truncation procedures which 
lead to stable computations. 

As mentioned earlier, it is not the purpose of this paper to evaluate the relative 
merits of the finite-difference or spectral methods. Since they can both be 
represented formally in an identical way, however, it may be possible to use this 
representation to investigate the differences and similarities of these methods. 

It may be seen from the computational approach suggested that the evaluation 
of the nonlinear interactions may be performed in parallel-i.e., simultaneously- 
at any one time step. Thus it is possible to conceive of a computer with a high 
order of parallel arithmetic capability significantly reducing the real time necessary 
for an extrapolation of a differential equation of the type given in (1). Although 
the realization of this possibility has existed, the presentation of the computational 
equations in the past has obscured the simplicity of the task. 

Finally, from a practical point of view, the computational form of the general 
differential equation (1) can be programmed for digital computation-at least 
the nonlinear terms which involve only space truncation-once and for all. Thus 
each investigator need not prepare a new program for calculation. He need 
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merely specify his time truncation scheme, the order of his vector x, necessary 
initial conditions, the order of nonlinearity (M), and the interaction matrices ZZm 
in terms of the nontrivial sets Ah . Although such a general program has not yet 
been prepared, the technique has been used satisfactorily for the model discussed 
in Section VI and for simple models such as the Barotropic Vorticity Equation. 
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